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Challenges in Lattice Boltzmann Computing 
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Some of the most urgent challenges facing the lattice Boltzmann equation 
(LBE) to rival state-of-the-art computer fluid dynamics (CFD) techniques are 
discussed. A novel LBE scheme for k-e turbulence modeling is proposed. 
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1. INTRODUCTION 

Lattice Boltzmann methods have known a rapid expansion in the late 1980s. 
Originally motivated by the need to beat the statistical noise plaguing 
its ancestor (the lattice gas automata method), t~) the lattice Boltzmann 
method has undergone a series of progressive refinements and extensions 
which have taken it to the point where it can be used as a competitive 
technique to compute a variety of nontrivial flows, t2~ Yet, as compared to 
state-of-the-art computational fluid dynamics (CFD) techniques, it appears 
that the gap to be bridged is still rather wide. Among te most urgent 
developments which are called for, we note the following two: 

1. Ability to deal with complex geometries. 

2. Ability to incorporate turbulence models. 

In this paper we briefly review some recent developments pertaining to 
1 and 2 and make few suggestions for further improvements. 
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2. COMPLEX GEOMETRY 

In what follows, we shall refer to the lattice Boltzmann equation 
(LBE) in its "Chapman-Eksong" form, 121 

b 

f , . (x+c , ,  t +  1) - f , . (x ,  t ) =  ~ A o . ( f j - f ~ q ) ,  i = l , b  (1) 
j = l  

where f~(x, t) represents the particle population at time t on the node x 
along direction cl. The velocity variable c; is discretized on a suitable 
discrete lattice, ensuring isotropy on a macroscopic level. For  three- 
dimensional simulations we need a four-dimensional lattice (face-centered 
hypercube, FCHC), in which 24 distinct values of ci are defined. The r.h.s. 
of ( 1 ) represents the effects of particle collisions: the matrix A o. is symmetric 
and fulfills the sum rules imposed by mass and momentum conservation. 
The f~q represents the local equilibrium distribution function, expanded to 
the second order in the local flow field u in order to retain convective 
effects: 

C 2 

f~q = Qi=au=u/j, Qi=p = c i = c i p - 3  ~5=p; o~, fl = 1, 2, 3 

where D = 4 is the dimension of the lattice. It can be shown that in the 
continuum limit Eq. (1) converges to the Navier-Stokes equation for an 
incompressible fluid. 

Equation (1) can be regarded as a first-order Lagrangian scheme for 
the following set of partial differential equations: 

o , f , (x ,  t) + c, .  G f , ( x ,  t) = Y. & ( L - f ; ~ )  -- G 
J 

(2) 

in which the collision term is treated fully explicitly and the streaming term 
is integrated along the characteristics d x ; = c i d t .  In order for Eq. (1) to 
reproduce the Navier-Stokes equations in the hydrodynamic limit, 
stringent conditions are imposed on the lattice topology. In particular, 
since all discrete speeds have the same magnitude [oil =c ,  the charac- 
teristics give rise to a forcedly regular and uniform spatial mesh. This is the 
key to the simplicity of the scheme, and also to its amenability to massive 
parallel computing on both SIMD and MIMD architectures. 

On the other hand, it also sets a serious obstacle to the ability of the 
method to handle complex geometries such as those commonly encoun- 
tered in most CFD engineering applications. It appears therefore that 
removing this obstacle is important to raising the competitiveness of the 
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LBE in the CFD arena. This problem has been addressed ~2-4) in the recent 
past. In particular, in Ref. 5 it is shown that by borrowing some standard 
ideas from the finite-volume method, the original LBE can be extended in 
such a way as to handle Cartesian nonuniform geometries. Directing the 
reader to the original reference for a detailed description, here we shall 
content ourselves with a reminder. 

The basic idea is to start from the differential form of LBE, Eq. (2), 
and apply Gauss" theorem to a set of macrocells (finite volumes) covering 
the spatial domain. For each cell, with a volume Vp, a corresponding 
"coarse-grain" distribution F~p is defined as 

Fip=-~p lv f,.dV (3) 

The mean value of the r.h.s, of Eq. (2) becomes 

1 ; Ci(f~)dV (C;(F,p))  = -V--~p v, 

1 I }-' Ao ( f J - f~q )  dV 
v. v,j  

This can be rewritten as 

where 

Here 

_ _  e q  (C,(Fip)) = Y'. Ao.[(Fj, Fjp - F~eq)] (4) 
J 

= Qj p - ' ' F jp = Qj~,p( U,pUpp) 

,f u~dV, ot=x, y,z U~,,=--~p v, 

! represents the mean velocity over a macrocell and u~p is the velocity 
fluctuation at the macrocell scale. The kinetic term of the 1.h.s. of Eq. (2), 
using the Gauss theorem, becomes 

~,p=-~p lv (ei" Vfi) dV 

1 Io (e,.~)f~da 
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This term is naturally interpreted as the balance of the probability 
density passing through the boundaries of the macrocell Vp. In order to 
compute r we need to specify the surface values f,. as a function of the 
nodal values F;. This requires an interpolation procedure within the 
neighborhood of the cell Vp. We have studied two interpolation schemes 
based on a piecewise constant (PWC) and piecewise linear (PWL) repre- 
sentation of the function f,., respectively. It has been shown that at least 
piecewest linear interpolation is required for the streaming operator in 
order to avoid serious problems of numrical diffusion/6) 

The PWC and PWL schemes are shown in Figs. 1 and 2, respectively, 
for the case of one-dimensional propagation along the z axis. In both cases 
the time variation of the mean population of cell p is given by 

At : r  - -  ( ~ o u t  = ~)ip 
where ~io, ~ou, respect the income and the outcome fluxes per unit 
volume, respectively. For instance, in the case of Fig. I, 

J x  J y  dt  
~ i ~  = F ( k  - -  1 ) - -  V(k) 

�9 o.t = F(k)Av(~Yk)At 

where V(k) = J x  dy  dz(k)  is the volume of the kth cell. 

F(k - 

-,,,, F(k) 

l ~ } o u t  

P 
�9 r e L  t, 

z X z ( k  - 2) z x z C k  - t) zx (k) 
Fig. 1. An example of piecewise constant interpolation: the arrow denotes the propagation 

direction. 
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Fig. 2. An example of piecewise linear interpolation: the arrow denotes the propagation 
direction. 

In Fig. 2, z§ is a free term which is adjusted in such a way as to 
minimize numerical diffusion. Equation (2) for a nonuniform lattice 
becomes 

F~p = F ~p + A t [ ~ A o.( Fjp -- F~  ) - ~ ~p ] (5) 

where P~p is the population at time t + At. Note that the velocity fluctua- 
tions at the cell scale have been neglected in the collision operator 
(Fn eq =0).  This corresponds to a PWC approximation of the collision - - I p  

operator, as opposed to the PWL interpolation used for the streaming 
operator. The rationale behind this choice is that the collision operator, 
being local, i.e., no space derivatives, can be consistently discretized by a 
zeroth-order polynomial interpolation. 

Equation (5) has been successfully employed in two dimensions for the 
calculation of low-Reynolds-number flows past bluff bodies. More recently 
the FVLBE has been extended to three dimensions with stretched grid size 
along z and successfully employed for the simulation of turbulent channel 
flow. (71 A typical mean-velocity profile in a turbulent channel flow is shown 
in Fig. 3 and compared with the theoretical velocity profile. 18) Similarly, 
in Fig. 4 we report the stress tensor r,= = (u,u~).  This calculation was per- 
formed on a 64 ,64 ,128  nonuniform mesh covering a domain size of 
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512,960,192 physical units. This calculation takes about 5 sec/step on a 
IBM RS/6000, model 580, corresponding to roughly 100/zsec/grid point. 
This is about three times higher than the corresponding figure for uniform 
LBE (about 30/~sec/grid point), an overhead that is largely overcompen- 
sated by the savings in terms of number of grid points, about a factor 165. 
As a matter of fact, this calculation would have been just u l f e a s i b l e  with 
a conventional uniform LBE (83 GB of memory and 2000 sec/step[). The 
present FVLBE compares well also with state-of-the-art CFD calculations 
based on Spectral-Chebitsev expansion. 19) The three-dimensional FVLBE 
scheme implemented so far is restricted to a Cartesian streched mesh of the 
form 

x i  = A x  �9 i 

y j  = A y  * j 

z k = A z ( k )  �9 k 

This simplifies the interpolation procedure and consequently the form 
of the streaming term Pip to a considerable extent. Besides the obvious 
gains in computational efficiency, this also permits us to control (partially) 
the numerical viscosity of the scheme beforehand. However, in principle 
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Fig. 3. Mean velocity profile for a turbulent channel flow; the dotted lines represent the max- 
imum and the minimum values of the theoretical velocity profile, computed with the viscosity 
derived by the numerical experiment: Reynolds number R ~ 3000, viscosity v = 0.013 _+ 0.002, 
typical velocity v, = 0.014 ___ 0.001. 
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Stress tensor r.,.:-~ (u.~ u:) vs. z, for the same condition as in Fig. 3. As a consistency 
check, we computed t,. = (r/p)ll2l== 0 and obtained o. =0.012. 

there are no conceptual obstacles which prevent the present FVLBE for- 
mulation from being extended to arbitrarily structured geometries based on 
hexahedral cell shapes. A similar argument would equally apply to a finite- 
element implementation of LBE, which would open the way to even more 
complex (unstructured) geometries. The question which comes about is 
then: what would we gain with respect to existing finite-volume of finite- 
element methods? 

In our view a possible advantage is the fact that within LBE diffusion 
effects do not involve second-order spatial derivatives: in fact, second-order 
spatial derivatives emerge from adiabatic relaxation of the stress tensor to 
its equilibrium form. ~2) This results in a handier treatment of the diffusive 
fluxes in the interpolation procedure. Only future experimenation, however, 
can tell us whether this potential advantage translates into a higher 
efficiency on parallel computers. 

3. T U R B U L E N C E  M O D E L I N G  

Another must for any competitive CFD method aiming at the descrip- 
tion of high-Reynolds-number flows of engineering interest is the ability to 
incorporate some form of turbulence modeling, i.e., some mathematical 
representation of small (unresolved, subgrid) scales on the large (resolved) 
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ones. The task is a very difficult one and constitutes one of the major open 
problems in CFD. In the absence of a complete theory (which might well 
not exist!) several semiempirical approaches have been worked out over 
the years. In this context, a keystone idea is the concept of "eddy viscosity" 
v t as a synthetic indicator of the damping effects exerted by small scales on 
the large ones. In the most common turbulence models, the eddy viscosity 
provides the link between the deviatoric component of the turbulent stress 
tensor r~p - (u 'u '~)  and the large-scale strain tensor S~p = �89 Up + 0p U~): 

1 zo, p -  gz},y~,p = - v I S ~ ,  # 

In these expressions U~ represents the large-scale field, while u" is the 
small-scale fluctuating velocity (Greek indices denote spatial components). 
The simplest form of eddy viscosity is due to Smagorinski, t'~ and reads as 

v,=CsA21SI (6) 

where A is the typical linear mesh size, and ISI = (S~pS,~p) 1/2, and Cs is an 
empirical constant (Cs > 0). Turbulence models in the Smagorinski class, 
i.e., in which v, is a algebraic function of the local strain tensor, are quite 
naturally included within the LBE formalism. This is because the strain 
tensor is available locally at each lattice site, being in fact an independent 
variable treated by the LBE exactly on the same footing as fluid density p 
and velocity u. This was realized very early by the LBE community, although, 
to the best of our knownledge, the first actual application appeared only as 
late as 1992. r In practice, all that is needed is to let the leading eigenvalue 
2 of the scattering matrix A u, the one controlling the fluid viscosity via the 
relation 

= 1  ( 1 _ _ 1 •  (7) 
v 3 \ l a l  2 j  

to become an appropriate function of ISI. By inverting (7), one gets 

2 
12(3)1 = 

6v(S) + 1 

which is straightforwardlyy implemented in any LBE code at virtually zero 
extra cost. On the next level of complexity in the hierarchy of turbulence 
models one finds the two-equation k-e turbulence model, where k is the 
mean turbulent kinetic energy and e the mean turbulent kinetic energy 
dissipation: 

2 (u,,u~,), e=-~= IVu'l'- 
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The k-e model is again based on the notion of effective eddy viscosity, 
but, at variance with Smagorinski, it responds to the variance of small 
scales, via k and e, 

k 2 
v , ~ - -  (8) 

As a result, to close Navier-Stokes, two dynamical equations for k and 
e are needed. Typically they take the following form: 

Ok Ok 
-~ + u " Ox = . k  V , A k  - e - t =aS~a 

Oe .0  i _  e e 2 
Ot + u Ox - . . v ,  A e -  C~ ~ r~aS,, a -  C2 

(9) 

where ~ ,  ~k, C1, C2 are calibration constants/12) 
An interesting question arises as to whether an LBE scheme can be 

found which generates Eq. (9). In the next section we will argue for a 
positive answer to this question. 

4. A TENTATIVE LBE SCHEME FOR k-~ TURBULENCE MODEL 

The first step is to interpret k and e as densities of two additional 
populations X; and rh: 

2d 2d 

k =  ~, X~, e =  2 q; (10) 
i ~ l  i ~ l  

living in a simple d-dimensional nearest neighbor lattice (four populations 
in two dimensions and six in three dimensions). The advective and the 
diffusive terms in Eq. (9) are standard for LBE scheme and do not need 
any special ingredient. Similarly, the terms - e ,  e2/k, and k2S2/e, being 
local, can be modeled as nonlinear volume mass production sources by 
terms of the form 

1 r h  1 e 2 1 ZoII?ls 
~ - ~ e - ~ ,  2dk -2d  EkZk 

k 2 
r~/jS~a = - - -  S 2 + ~ S 

respectively. 

822/81/I-2-2 
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The final form of the k-e LBE scheme is 

1( 2k k~ ) 
Xi(x+ci, t+I)--Zi(x,t)=~(Z,--Xiq)--~ e - - ~ S + T S 2  (11) 

g2 
g/i(X "-1-Ci, t '-]-1)- rh(x, t)=~/(~i--/~t e-q) - -C lkS  2 -  C2- ~ (12) 

where 2 and/z are adjusted in such a way as to match the eddy viscosities 
ekv, and e~v,, respectively. Projection upon 1~= (l, 1 ..... 1) and c;, respec- 
tively, yields (recall that Y.~ c ;= 0) 

k-" 
O,k + V. Jk = 2(k - -  k e q )  - e -I- - -  S 2 - 2kS 

E 
(13) 

tO,J k + V. I]k =/~(Jk - -  J ~ q )  

where 

J k = ~ ,  cixi 

" (14) 
flk = ~ c,e,-x, 

i 

We have assumed the following form for the equilibrium distribution: 

zeq = ~ (  1 Ci" U'~ + - - v -  (15) c; ) 

where the constant cs = c/D 1/2 represents the sound speed. This yields 

k e" =k ,  J~q = k u  (16) 

and 

H~q =kc.~l (17) 

where I is the unit tensor. By adiabatic relaxation of J k ,  from Eq. (13) we 
obtain 

1 
Jk ~ k u  + -  V" (kc~l) (18) 

It 

By plugging Eq. (18) into Eq. (13), we obtain 
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which is precisely the equation for k with the identification 

I~ l = _ - -  

"~ 2 
c~, i.e. /x = - e  k-~'2 
/1 

A similar argument in Eq. ( 11 ) leads to the equation for the mean dis- 
sipation e. This theoretical result shows that in principle the k-e turbulence 
model can be naturally embodied within the LBE formulation provided/~ 
is made a suitable function of k, e. 

Work is in progress to assess the efficiency of the scheme for flows of 
engineering interest. 

5. CONCLUSION 

Two major developments of LB theory, the capability of dealing with 
complex geometries and to incorporate some of the most common tur- 
bulence models, have been briefly discussed. It was shown that the basic 
structure of LBE is flexible enough to accommodate both the aforemen- 
tioned extensions. In particular, a new class of flow simulations, namely 
three-dimensional turbulent flow channel, is made accessible to an appro- 
priate generalization of the finite-volume technique. The actual efficiency of 
the corresponding numerical scheme as compared to the standard CFD 
method can only be found by direct experimentation. However, there is 
no reason to believe that the most appealing features of LBE, i.e., easy 
handling of complex boundary conditions and amenability to parallel com- 
puting, cannot be carried over into these generalized schemes. 
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